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calculations required to assess the properties. Quick
machine-learning estimators of these properties may
suffer from generalization issues, in particular in the
chemical space of materials [1].

learning model to provid e candidates that are evalu ated
by DFT calculations. The model is thus used as a
surrogate of the property to be optimized, and is re-
trained regurlarly using all discovered data points, so
that it is suited to the chemical space of the actual

optimization problem. Our method is evaluated by
maximizing the HOMO energy.

At the start of the experiment, the dataset of solutions
contains only the methane and its associated HOMO
value (-10.58 eV). Knowledge to predict accurately the
objective value of the candidates must yet be acquired.
At the end of the experiment, the best solutions found
are derivatives of polyamino-cyclobutadiene, that have
high HOMO energy values (above —2.70 eV).
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We propose here to tackle the problem with a CH,
surrogate-based black box optimization approach. It
consists in optimizing the values predicted by a machine
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The surrogate function is defined as a Gaussian process
regression (GPR) model, that provides an uncertainty
estimation of its predictions. It is used with a RBF kernel,
applied on the MBTR descriptor [2].

J

ﬂ/\/e use an evolutionary algorithm (EvoMol [3]) as\

an internal optimizer providing candidate solutions. In
our setting, th e function that is optimized is neither the
DFT nor the surrogate function directly, but the
expected improve ment of the surrogate, that takes the
uncertainty into account.

At each step of the main loop, the population of the
evolutionary algorithm is initialized with asubset of the
dataset, drawn randomly based on the HOMO value.
After evolutionary optimization, the best candidates
\are submitted to DFT evaluation.

ﬁjr approach (blue straight line) is assessed againstﬁ
direct evolutionary optimization of the DFT-estimated
HOMO, thus without using a surrogate model (orange
dashed line). The knowledge learnt by the surrogate
allows to find better scoring solutions with less calls to

the costly DFT evaluation.
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